
Abstract—Impedance pneumography could be used for 
measuring respiratory parameters quantitatively in ambulato-
ry conditions. It was noted that body posture affects the cali-
bration coefficient connecting the measured impedance values 
and their first derivatives with volume and flow reference 
signals. Standard techniques for automatic detection of body 
posture and activity usually require additional motion sensors. 
However, in terms of the measurement comfort, less number of 
sensors is needed. Single sensor mounted on the chest provides 
good results, however its accuracy decreases during frequent 
changes of body posture. The aim of this study was to assess 
the possibility to detect body posture changes using the imped-
ance signal itself, without any other devices or the active coop-
eration of the person being studied and prospectively improv-
ing the body posture change detection method using single 
motion sensor (e.g. 3D accelerometer). Fifteen healthy students 
(11 males) performed two body posture changes - get-ups and 
stand-ups. Six classification techniques were checked for pre-
diction accuracy. It was found that artificial neural networks 
provided the best overall accuracy (90%). 

Keywords—Impedance pneumography, Ambulatory respir-
atory monitoring, Motion tracking, Machine learning  

I. INTRODUCTION  

Development of wearable technologies and the ease of 
large data sets processing seem to increasingly affect the 
number of surveys performed at home, during normal life, 
over long periods, ”in the background” [1-2]. 

Respiratory monitoring appears to gain more interest for 
long-term measurements protocols in the future, due to the 
increasing number of respiratory-related problems existing 
both during the day and at night (e.g. apneas or asthma). 

Impedance pneumography (IP) could be used as a non-
invasive method to measure quantitative respiratory pa-
rameters [3-5]. It measures changes in transthoracic electri-
cal impedance with four electrodes fastened to the patient’s 
thorax. It uses the tetrapolar technique, in which there are 
two application electrodes (injecting high-frequency, 
10kHz−100kHz, sinusoidal, rectangular or other current 
with a constant amplitude, 100μA−1mA, regardless of the 
output load) and two receiving ones. The current signal is 
injected into the body and, as a result of the breathing  

action, it is amplitude-modulated. Demodulation extracts 
the breathing component.  

However, it was noted that the calibration coefficient 
connecting the measured impedance values and their deriva-
tives with the volume and flow reference signals are strong-
ly dependent on changes of subject’s body posture [4,6]. 
Therefore, long-term impedance pneumography systems 
would require an automatic body posture detection part. 

Signals describing natural patient activity were used in 
home-care applications for elderly persons [7-8], in evalua-
tion of the activity of small children during the day and at 
night [9], for indirect measurements of energy expenditure 
(particularly in athletes) [10-12] or for fall detection sys-
tems [13-14]. 

There are several methods to determine a given subject’s 
posture or body activity. Among them, the most popular are 
methods employing accelerometers and gyroscopes [15], as 
well as contact-free, 4D optical systems [16].  

The optical systems calculate a map of the depth of the 
scene, using a combination of cameras for visible and infra-
red light. On the basis of raster deformation and triangula-
tion analysis, they determine the shape of the surface of the 
body [17]. However, it seems that the currently used sys-
tems cannot be adapted for use in Holter-type tests. 

Regardless of the type of motion sensor [15, 18], signals 
associated with change of body posture are largely avoida-
ble and dependent on the person being studied and sensors’ 
setting [7, 19]. Thus, the issue of projecting solution for 
detecting body posture should be divided into two aspects: 
1) equipment (applied technology, number of sensors, con-
figuration of their placement) and 2) signal analysis (initial 
processing, classification algorithms – types of differentia-
ble activity, types of parameters constituting input data for 
the algorithm). 

A greater number of sensors allow more detailed analy-
sis, at the cost of greater complexity of the signal processing 
procedure, greater power consumption, increased discom-
fort for users, and also difficulties in online mode running. 
Alternatively, using one sensor allows the data analysis to 
be simplified, what is important in the contexts of perform-
ing detection in online mode and optimization of power 
consumption. It minimally distorts normal activity, provides 
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good results in the context of physiological measurements, 
but its accuracy decreases during frequent changes of body 
postures, and the number of states that can be differentiated 
is limited. However, this solution seems to be the best com-
promise and is usually used with the setting in which the 
front side of the chest is the place to fix the sensor [20-21]. 

For the reasons described above it is needed to improve 
the detection of body posture changes. The idea is to detect 
body posture changes using the impedance signal itself and 
use it as a supplement to the data generated by systems for 
automatic body activity detection.  

Therefore, the aim of this paper was to assess the accura-
cy of body posture changes classification using impedance 
pneumography signals and classifiers - artificial neural 
networks (ANN) [22], support vector machines (SVM) [23], 
decision trees (DT) [24], boosting with trees algorithms 
(BTA) [25], random forests (RF) [26] and generalized linear 
models (GLM) [27]. We did not consider combining the 
classifiers into hybrid one. 

This work is a preliminary pilot study to test the novel 
consideration. The analyzed data come from measurements, 
which had to exhibit agreement between impedance pneu-
mography and pneumotachometry signals. Therefore, there 
are only two kinds of body posture changes - get-ups (from 
supine to sitting) and stand-ups (from sitting to standing). It 
was assumed that if the results were promising, these anal-
yses and deliberations would next be applied to sleep stud-
ies and for other body posture changes, separately. 

II. METHOD  

We measured volume-related impedance signals using 
our own prototype, impedance pneumograph, with a sinus-
oidal application current of 250μA amplitude and 100kHz 
frequency [28]. The signals were gained to confirm the 
linear relationship between respiratory parameters measured 
by reference pneumotachometry (PNT) and impedance 
pneumography. The WinAcq ADC recorder stored the sig-
nal at a 200Hz sampling frequency. Then, the IP signal was 
smoothed, filtered and 8-fold decimated. No other signal 
processing methods necessary to determine respiratory 
parameters, such as detrending, were used. 

The measurements were carried out on 15 healthy stu-
dents: 11 males aged 19-25 (M: 22.1; SD: 1.8) and 4 fe-
males aged 21-26 (M: 23.0; SD: 2.4), for whom body mass 
indexes were in range 19.3-34.2. 

We have complied with the World Medical Association 
Declaration of Helsinki regarding ethical conduct of re-
search involving human subjects. We obtained informed 
consent from all participants and the approval from Ethical 
Committee of Warsaw Medical University. 

Four electrodes (tetrapolar method) were positioned as 
proposed by Seppa et al. [29]. The receiving electrodes 
were placed on the midaxillary line at about 5th-rib level 
and the application ones on the proximal side of the arm, on 
the receiving electrodes’ level. We utilized standard, spot, 
disposable ECG electrodes. 

The procedure consisted of taking 8-10 breaths each in 
supine, sitting and standing postures (with different breath-
ing rates and depths) in immediate succession. The partici-
pants changed body postures after each sub-session of 
breathing, without any break. They were not informed that 
the get-ups and stand-ups were being registered; therefore 
these body posture changes were possibly the most natural. 

Signal segmentation was performed through determining 
episodes, which are defined as signal parts between consec-
utive beginnings of inspiration periods. They were automat-
ically marked using the measure of correlation with breath-
ing pattern and some heuristics techniques (to improve 
detection, e.g. the correlation threshold was provided in 
order to exclude the non-breathing episodes). In that way, 
we had 6 repetitions of about 24-30 breaths, get-up and 
stand-up for each subject. Fig. 1 presents the sample IP 
signal stored for the seventh subject (deep breathing at a 
rate of 10x/min) with the automatically detected episodes 
starts. We did not calibrate the values into volumes, due to 
the linear transition function between IP and PNT [4].  
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Fig. 1 An example of the impedance pneumography signal stored for 

the seventh subject (deep breathing at a 10x/min rate) with the automatical-
ly detected episodes' starts; there was a "get-up" between the 9th and 10th 

marks and a "stand-up" between 18th and 19th  
 

 Next, the set of parameters describing the episodes was 
provided for each one. We considered time-domain and 
spectral-related parameters and chose 18 input parameters 
describing each episode. They were determined using the 
Minimum Redundancy and Maximum Relevance (MRMR) 
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feature selection method [30] and the visual observation of 
the box-plots for consecutive parameters values. The final 
set consists of: 
• The mean and the standard deviation of the short-time 

energy (STE) of the episode signal. 
• The mean and the standard deviation of the zero-

crossing rate (ZCR) for the first derivative of the epi-
sode signal. 

• Some of the linear prediction 8th-order filter coeffi-
cients (LPC). 

• The first two frequency formants of the episode signal 
(according to the LPC calculation). 

• The number of the smoothed episode signal extremes.  
• The number of extremes of the smoothed first deriva-

tive of the episode signal. 
• The sum of the contribution of the frequency quartiles 

to the overall spectrogram. 
• The standard deviation of the normal distribution fitting 

to the histogram of the episode signal samples. 
• The standard deviation of the normal distribution fitting 

to the histogram of the first derivative of the episode 
signal samples. 

Parameters from Burg autoregressive estimation, LPC 
and FFT spectral analysis, STE calculations of the first 
derivative and ZCR of the episode signal were removed 
from the consideration due to the very small variation. 

All of the input parameters were normalized in order to 
improve classification performance. The outputs were di-
vided into four possible states: 
• ”1”: normal breath (2080 times) 
• ”2”: get-up (88 times) 
• ”3”: stand-up (73 times) 
• ”4”: other artifact (4 times) 

The difference in the number of get-ups and stand-ups 
episodes results from the fact that several stand-ups were so 
quick that they did not result in specific changes in the sig-
nal. As the breathing episodes were significantly more nu-
merous than the others, we used for classification only 2.5 
times the number of get-ups, randomly selected. The data 
was divided into randomly selected training and testing sets 
with the proportions 0.6/0.4, respectively. For all classifiers, 
the division was the same and prepared before training. 

Due to the high variability of the episode signal shapes 
corresponding to body posture changes, various classifica-
tion techniques were examined: 
• Artificial Neural Network (ANN) - three-layer percep-

tron with 36 neurons in the first and second hidden lay-
ers (twice the number of input parameters, chosen for 
the best performance). Levenberg-Marquardt back-
propagation learning algorithm was used. 

• Support Vector Machines (SVM) – classic binary clas-
sifier, tuned for the best performance (3th degree of 
polynomial kernel with 0.001 gamma). It must be not-
ed, that for multiclass-classification the ‘one-against-
one’-approach is used, for 4 states (distinguished in the 
protocol) 6 binary classifiers are trained and the appro-
priate output is found using a voting scheme [23]. 

• Decision Tree Algorithm (DTA) - automatically set 
using rpart package for R. 

• Boosting with Trees Algorithm (BTA) – classification 
by taking lots of possibly weak decision tree predictors 
and getting the stronger one by weighting and adding 
classifiers. 

• Random Forests (RF) – the improvement of decision 
tree algorithm adding tree bagging and random selec-
tion of feature vectors; after pre-tuning 150 trees were 
chosen for the best performance, however each calcula-
tion provides different results, due to randomness. 

• Generalized Linear Models (GLM) fitting with Princi-
pal Component Analysis (PCA) as a pre-processing 
tool to get the parameters, which gain 99% of variance, 
in order to decrease the dimensionality of the problem, 
with 10-time cross-validation. 

For each classifier, we determined overall accuracies (not 
for each subject alone, due to the small number of data) and 
balanced accuracies (the arithmetic average of sensitivity 
and specificity) [27]. 

Signal processing, parameter calculations, dimensionality 
reduction of the input vector and neural network classifica-
tion were performed using the MATLAB with correspond-
ing toolboxes. R program carried out other classification 
techniques, with the caret package [27]. 

III. RESULTS 

Overall accuracies and balanced accuracies for normal 
breathing, get-ups, stand-ups and other artifacts are collect-
ed in the Table I. 

In order to assess the predictor’s ability to distinguish be-
tween get-up and stand-up, confusion matrices, presented in 
the Table II, were calculated for all classifiers. 

Table 1 Overall accuracies and balanced accuracies of the considered 
predictors: ”1” denotes breath, ”2” – get-up, ”3” – stand-up ”4” - other 

artifact during breathing 

Predictor Overall “1” “2” “3” “4” 
ANN 90.2% 97.2% 90.3% 87.3% 100% 
SVM 79.7% 98.1% 83.2% 57.3% 50% 
DT 83.7% 94.2% 78.4% 80.5% 50% 

BTA 83.0% 96.4% 88.6% 67.4% 50% 
RF 81.7% 96.6% 84.4% 69.4% 50% 

GLM 75.2% 93.4% 80.0% 58.7% 50% 
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Table 2. The summary of confusion tables for all classifiers;  
accuracies are presented in percent 

Artificial Neural Network 
 Reference 

Prediction “1” “2” “3” “4” 
“1” 94.4 0.0 0.0 0.0 
“2” 3.4 88.2 21.4 0.0 
“3” 2.2 11.8 78.6 0.0 
“4” 0.0 0.0 0.0 100.0 

 
Support Vector Machines 

 Reference 
Prediction “1” “2” “3” “4” 

“1” 97.8 0.0 0.0 50.0 
“2” 2.2 88.2 82.1 50.0 
“3” 0.0 11.8 17.9 0.0 
“4” 0.0 0.0 0.0 0.0 

 
Decision Tree 

 Reference 
Prediction “1” “2” “3” “4” 

“1” 97.8 0.0 17.9 50.0 
“2” 2.2 61.8 10.7 50.0 
“3” 0.0 38.2 71.4 0.0 
“4” 0.0 0.0 0.0 0.0 

 
Boosting with Trees 

 Reference 
Prediction “1” “2” “3” “4” 

“1” 94.4 0.0 3.6 0.0 
“2” 5.6 97.1 60.7 100.0 
“3” 0.0 2.9 35.7 0.0 
“4” 0.0 0.0 0.0 0.0 

 
Random Forests 

 Reference 
Prediction “1” “2” “3” “4” 

“1” 93.3 0.0 0.0 0.0 
“2” 6.7 88.2 57.1 50.0 
“3” 0.0 11.8 42.9 50.0 
“4” 0.0 0.0 0.0 0.0 

 
Generalized Linear Regression Model 

 Reference 
Prediction “1” “2” “3” “4” 

“1” 89.9 0.0 3.6 50.0 
“2” 10.1 85.3 75.0 0.0 
“3” 0.0 11.8 21.4 50.0 
“4” 0.0 2.9 0.0 0.0 

IV. DISCUSSION  

We proposed a set of 18 parameters to classify the im-
pedance signal episodes into normal breathing, get-up, 
stand-up and other artifact. The number of parameters might 
be even reduced, but this was not the subject of the work. 
The currently selected ones allow calculations without any 
computational problems. 

The chosen parameters are strongly redundant as regards 
the distinction between breathing and another state. Howev-
er, the most important aspect of the study was to distinguish 
between body posture changes in the best possible way, and 
the greater number of parameters seems to be necessary for 
this purpose. 

We did not perform inter-individual analysis due to small 
amount of data, which should be further divided into train-
ing and test sets. 

As the results appear promising, it seems that further 
measurements should take into account ‘natural’ activities 
and the body posture changes characteristic during sleep, 
e.g. the change from lying on side to supine.  

Due to author’s consideration, the usage of Deep Learn-
ing methods for raw episodes signals, without parameteriza-
tion is promising technique for distinguishing between larg-
er numbers of possible body posture changes. For current 
issue, the usage of deep architectures of classifiers is not 
needed, because of the lack of high dimensionality of the 
problem. 

Presented paper is not intended to provide the method re-
placing usage of 3D accelerometers as a motion sensor. The 
possible issue of joining accelerometer/gyroscope-based 
body posture detection algorithms with the results come 
from IP (perhaps by using some heuristics or fusion meth-
ods, like Kalman filter) seems to be considered in order to 
check whether the additional information could improve the 
analysis significantly. 

V. CONCLUSIONS  

The aim of this paper was to assess body posture change 
detection during respiratory measurements using only im-
pedance pneumography signals for improving the classifica-
tion made by additional motion sensing equipment. We 
found that a set of 18 parameters describing episodes with 
an artificial neural network (three-layer perceptron topology 
with 36 neurons in first and second hidden layers, with a 
Levenberg-Marquardt back-propagation training algorithm) 
as a classifier provided the best overall accuracy (90%). 
This method also distinguished each body posture change in 
the best way. 

However, further studies with greater number of body 
posture changes for greater numbers of subjects should 
improve the assessment and could provide conclusions for 
the Holter-type quantitative respiratory measurement sys-
tem based on impedance pneumography. 
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