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Abstract— Cough monitoring is an important element of the
diagnostics of respiratory diseases. The European Respiratory
Society recommends objective assessment of cough episodes and
the search for methods of automatic analysis to make obtaining
the quantitative parameters possible. The cough ”events” could
be classified by a microphone and a sensor that measures the
vibrations of the chest. Analysis of the recorded signals consists
of calculating the features vectors for selected episodes and
of performing automatic classification using them. The aim of
the study was to assess the accuracy of classification based
on an artificial neural networks using vibroacoustic signals
collected from chest. Six healthy, young men and eight healthy,
young women carried out an imitated cough, hand clapping,
speech and shouting. Three methods of parametrization were
used to prepare the vectors of episode features - time domain,
time-frequency domain and spectral modeling. We obtained the
accuracy of 95% using artificial neural networks.

I. INTRODUCTION

Chronic cough is a very common symptom of respiratory
diseases like asthma, chronic obstructive pulmonary disease
(COPD) or lung cancer. Usually, cough monitoring consists
of the subjective assessments of patients (collected during
the medical interviews) and the results of questionnaires
based on a visual analogue scale. However, the European
Respiratory Society (ERS) recommends searching for meth-
ods of automatic analysis of cough in order to make ob-
taining quantitative parameters possible [1], [2]. Analysis
of cough frequency and intensity gives an objective method
to diagnose and assess the progression of therapy [3], [4].
Currently, during cough monitoring, it is very important to
evaluate cough episodes comprehensively with combinations
of subjective and objective tools [5].

Cough can be treated as an example of vibroacoustic
signal, what determines the choice of methods for signal
recording. Most often, the cough sensors consist of micro-
phones for recording the sound component of the signal and
accelerometers for recording the chest vibrations [1], [2], [4],
[6]. The microphones in cough monitoring systems are very
small in order to allow attachment to patients and design of a
portable system for daily activity registration. Mostly, omni-
directional electret condenser microphones with sensitivity
at the level of −40dB (Sony, Panasonic, Bruel & Kjaer)
are used [7], [8], [9]. The chest vibrations are mainly
recorded using accelerometers and piezoelectric sensors [1],
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[4], [10], [11]. Accelerometers are placed on the surface
of the patient’s body, usually between the cartilage of the
thyroid and the highest position of the sternum [2], [4].
Furthermore, other additional sensors and modules have been
already used, e.g. ECG and EMG channels, oxygen saturation
measuring units (SpO2) or esophageal pressure topography
ones [3], [6], [12], [13].

Automatic analysis is based on extraction and clas-
sification of cough ”events” from the recorded signals.
Parametrization of the signals through calculation of vectors
of episodes features seems to be necessary for this task.
This could be accomplished by processing the signals or
their envelopes in the time domain (with amplitude peak
detection or zero-crossing rate calculation algorithms), in
the time-frequency domain (with spectral analysis) or with
spectral modeling [6], [9], [14]. The methods for calculating
spectral parameters are often those widely implemented in
speech recognition, e.g. mel-frequency cepstrum analysis
(MFCA) or linear predictive coding (LPC) [14], [15]. In
some cases, the parameters of discrete wavelet analysis
are also determined [11], [16]. The most commonly used
classification methods are statistical models, such as Hidden
Markov Models (HMM), in which the aim of the learning
procedure is to create unique models for each class of event
signal, represented as feature vectors or artificial neural
networks (ANN), where the results in the output layer of
the network determine membership of the appropriate class
of signals [14], [15], [16], [17], [18].

The main objective of this work was to assess the accu-
racy of cough episode detection based on artificial neural
networks using vibroacoustic signals recorded from chest.
We also wanted to evaluate the suitability and impact of
chosen descriptive episode parameters which were served as
input feature vectors.

II. METHODS

We registered vibroacoustic signals for the imitated
”events” of cough, single hand clap, shouting and speech
with a single Polish consonant or vowel. To record the data
we used an omni-directional condenser microphone (BCM,
Bestar) and a piezoelectric sensor placed on a belt (MLT1132
Piezo Respiratory Belt Transducer, ADInstruments) and po-
sitioned them on the patient’s chest, as in Fig. 1. Both signals
were measured by the multichannel recorder, ADInstruments
PL3516 PowerLab 16/3, with sampling frequencies of 20kHz
and 200Hz for sounds and vibrations, respectively. We
performed signal acquisition using the dedicated software,
LabChart8. The recorded signals were next pre-processed by
filtering, silent-part removal and signal envelope calculation.
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Fig. 1. Positioning of the microphone and MLT1132 Piezo Respiratory
Belt Transducer

The measurements were carried out on 14 healthy stu-
dents: 6 males aged 22-24 (M: 23.7; SD: 0.8) and 8 females
aged 23-26 (M: 24.0; SD: 0.9) - without any reported
respiratory or asthmatic diseases.

The study procedure consisted of 3 series. In each one
imitated cough, reading the Polish alphabet (24 phonemes),
hand-clapping and shouting (basically loudly pronouncing an
extended ”a” vowel) were performed, in silent condition. The
measurements were conducted in sitting body posture. The
experimental procedures involving human subjects described
in this paper were approved by the Institutional Review
Board.

While the signals were collected, the offline data analysis
was performed. First, we carried out episode segmentation
using the single-threshold technique. We applied a visually
determined threshold to the changes in standard deviation of
the signal over time. Next, for each specified episode, the set
of parameters was provided.

We calculated five parameters for the piezoelectric signal
and the same five for the envelope of the sound signal. They
were based on the shapes of the determined signals and are
listed below:

• the mean value of the episode signal (1st)
• the standard deviation of the episode signal (2nd)
• the area under the mean value (3rd)
• the percentage of the samples’ values greater than the

mean value (4th)
• the ratio of the mean values of the episode’s first and

second halves (5th).

In addition, for the microphone signal, we used spectral
parameters derived from mel-frequency cepstrum analysis
and the linear predictive coding. MFCA is a procedure based
on the determination of the inverse transform of signal
spectrum logarithm. The results are presented in a mel scale,
which relates them to subjective sound perception - this is
achieved using a dedicated filter bank. MFCA provided the
set of 13 parameters created from the coefficient matrix and
calculated in subsequent frames of the episode’s duration
as ratios of the sum of the specific frame values to the

sum of all frames values. Nine LPC parameters were simply
the 8th-order model coefficients. Therefore, total number of
parameters calculated for each episode was 32.

Differentiation between cough episodes and other recorded
signals was achieved using the artificial neural network,
a multilayer perceptron. We tested different numbers of
input parameters (16, 24 and all 32), reduced using the
mRMR algorithm [19] after parametrization procedure. In the
diminished set of 16 parameters all time-related parameters
of sound envelope, mean and standard deviation of the
vibration signal, first 3 parameters of LPC model and first
6 coefficients estimated from MFCA analysis (for lower
frequencies) were used. We added third and fourth vibration-
related parameters and remaining LPC ones to them to obtain
the set of 24 parameters.

In the learning phase, we classified the input vectors into
4 output states: cough, single hand clap, speech and shout.

In order to test classifiers we used cross-validation scheme
with 10 repetitions, with random data division into training
and testing parts with relative proportions of 0.7/0.3. As
the speech episodes were significantly more numerous than
the others (24 phonemes), we chose for training only those
phonemes whose waveforms showed the greatest mutual
differences in Polish pronunciation (”h”, ”j”, ”k”, ”s”, ”y”).
The mean accuracy for considered classifier were calculated,
and for the best one we added the information about its
standard error, sensitivity and specificity.

Various network topologies were considered. We per-
formed the analysis for two-layer and three-layer perceptrons
with different numbers of neurons in the hidden layers. The
numbers were chosen arbitrarily. The training technique was
Levenberg-Marquardt back-propagation.

We determined overall accuracies as statistics of the results
for the 10 neural network classifiers for every considered
topology and every number of input parameters.

Signal processing, parameter calculations, neural network
training and validation were performed using the MATLAB
software with corresponding toolboxes.

III. RESULTS

For each subject, the signals of imitated cough, single hand
clap, speech and shout were recorded. For further analysis,
we used the data obtained after pre-processing and features
extraction. Fig. 2. presents the sample waveforms of the
unprocessed sound signal of cough, and Fig. 3. single hand
clap.

We carried out mel-frequency cepstrum analysis for the
microphone signals, the sample results of which are pre-
sented in Fig. 4. The top subfigure shows the course of an
episode of cough in time, and the results of the analysis
are presented below in the form of the logarithm of the
signal spectrum and the calculated mel-frequency cepstrum
coefficients.

The results of the assessment of classification accuracy are
shown in Table I, in the form of mean value and standard
deviation for the 10 iterations of cross-validated data for
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Fig. 2. An example of the recorded signals of imitated cough
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Fig. 3. An example of the recorded signals of single hand clap

every neural network topology and every number of input
parameters.

For the best classifier, dealing with 32 input parameters
and consisting of two hidden layers, of which each had 32
neurons, we obtained 77% sensitivity and 97% specificity
for cough/other differentiation. Standard error equaled 0.04.

IV. DISCUSSION

In order to record cough ”events” two types of sensors
(microphone and piezoelectric one) were used. This choice
is justified by the nature of the received vibroacoustic signals
(e.g. behavior of the chest movements during cough). It
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Fig. 4. The results of the mel-frequency cepstrum analysis for imitated
cough

TABLE I
SUMMARY OF THE ACCURACY STATISTICS FOR A MULTI-LAYER

ARTIFICIAL NEURAL NETWORK FOR EVERY CLASSIFIER TOPOLOGY AND

EVERY INPUT PARAMETER VECTOR; A SINGLE NUMBER IN THE FIRST

COLUMN DENOTES THE NUMBER OF NEURONS IN A SINGLE HIDDEN

LAYER; TWO NUMBERS CORRESPOND TO THE NUMBERS OF NEURONS IN

DOUBLE HIDDEN LAYERS

Network topology Input parameters Accuracies statistics
16 16 75.0± 18.2 %

32 16 87.2± 11.3 %

16,16 16 84.2± 13.6 %

32,32 16 84.4± 12.0 %

24 24 84.6± 14.0 %

32 24 87.2± 11.9 %

24,24 24 90.4± 9.8 %

32,32 24 92.2± 9.5 %

32 32 85.7± 13.5 %

32,32 32 94.5± 6.4 %

seems that the number of sensors is sufficient, taking into
account the simplicity and accuracy of measurements.

The use of time parameters based on the waveforms
is justified because of the differences in signals’ shapes
observed during visual, exploratory data analysis. Both the
mel-frequency cepstrum and LPC parameters have already
been used to describe cough signals [8], [12]. However, in
our analysis, we used a different combination of input feature
vectors. Moreover, calculating the generalized 13 parameters
for the episode allowed reduction of the number of MFCA
coefficients.

Signals of cough, as well as other classified states, were
obtained in laboratory conditions, with relatively similar
duration of different episodes. A limitation of the study is
that the identification of the cough ”events” was carried out
on signals which did not differ each other much and did not
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contain the environmental noise component, which is present
in ambulatory conditions. Therefore, it seems necessary to
perform testing of the classifiers with imitated or natural
noise outside the laboratory in the future research.

In addition, due to the preliminary nature of the measure-
ments, only healthy people participated in the study, thus the
cough episodes were imitated. The number of subjects taken
into account should also be greater to make investigation
stronger in terms of accuracy, sensitivity and specificity
calculations.

The relatively low sensitivity of the study drew attention
to the need to evaluate other parameters of the signals
(especially estimated from piezoelectric sensor).

The accuracies for larger network topologies were defi-
nitely smaller than for the best possible one included in the
Table I. Furthermore, the computational times of training
procedure were disproportionately longer. Therefore, we did
not consider them.

We did not perform the analysis, what is the impact
of variance of events duration, however in our opinion
considered parameters were not very sensitive to episode
length.

Although the method seems to provide promising results,
further measurements should take into account measurements
performed outside the laboratory, for a longer time, and for
a greater number of considered output states.

V. CONCLUSIONS
The main objective of this work was to assess the accuracy

of a system for cough episode detection using a vibroa-
coustic sensor for recording and artificial neural networks as
classifiers. Despite the relatively small number of surveyed
people and the limitations mentioned above, we obtained
classification accuracy of 95% for signals undisturbed by
background noise. Moreover, analysis of the accuracies of
classification suggests that the selection of measurement
sensors was sufficient to assess the incidence of cough.

The analysis of accuracies for selected network topologies
and the reduced number of parameters showed that the
methods used for parameterization could achieve accuracy in
range of 80-95% and that accuracy increased with the num-
ber of the considered parameters. However, further studies
with greater numbers of subjects and with recording of noise
could improve the assessment.
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