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Detecting breathing and snoring episodes using
a wireless tracheal sensor - a feasibility study
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Abstract—Objective: Sleep-disordered breathing is both a clin-
ical and a social problem. This implies the need for conve-
nient solutions to simplify screening and diagnosis. The aim
of the study was to investigate the sensitivity and specificity
of a novel wireless system in detecting breathing and snoring
episodes during sleep. Methods: A wireless acoustic sensor was
elaborated and implemented. Segmentation (based on spectral
thresholding and heuristics) and classification of all breathing
episodes during recording were implemented through a mobile
application. The system was evaluated on 1,520 manually labeled
episodes registered from 40 real-world, whole-night recordings
of 16 generally healthy subjects. Results: The differentiation
between normal breathing and snoring had 88.8% accuracy. As
the system is intended for screening, high specificity of 95%
is reported. Conclusions: The system is a compromise between
non-medical phone applications and medical sleep studies. The
presented approach enables the study to be repetitive, personal,
and inexpensive. It has additional value in the form of well-
recorded data which are reliable and comparable. Significance:
The system opens unexplored possibilities in sleep monitoring
and study enabling a multi-night recording strategy involving
the collection and analysis of abundant data from thousands of
people.

Index Terms—sleep breathing disorders, snoring, tracheal
sound analysis, machine learning, smartphone application

I. INTRODUCTION

SNORING is the most common breathing disorder during
sleep. It may be either episodic or habitual (HS - habitual

snoring). It is the most significant single symptom of all other
sleep breathing disorders, such as upper airway resistance
syndrome (UARS) or obstructive sleep apnea (OSA). This is
why snoring is the primary symptom asked about in every
questionnaire focused on sleep-disordered breathing (SDB)
diagnosis. Paradoxically, while the sound of snoring is the
hallmark of OSA and each patient is asked about snoring
intensity and frequency, polysomnography (the gold standard
sleep study), does not analyze snoring events precisely in most
cases [1].

HS is linked to cardiovascular complications like atheroscle-
rosis [2], [3] and hypertension [4]. Other possible adverse
effects of HS include daytime sleepiness [5], and progression
of upper airway collapsability [6]. According to others, snoring
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is not associated with medical hazard in adults [7]. In children,
habitual snoring without obstructive sleep apnea is a known
risk factor for cardiovascular and neurobehavioral disorders.
Children with HS experience cognitive and often heightened
behavioral deficits similar to children with OSA, despite
the absence of recognized intermittent hypoxia or repeated
arousals [8]. Nighttime diastolic blood pressure is significantly
higher in children with HS compared with controls after
adjusting for age, sex, and body mass index [9]. HS in children
is also associated with reduced flow-mediated vasodilation,
which is a measure of endothelial dysfunction [10].

Above all, snoring is a social problem. With the most widely
accepted estimate for the prevalence of chronic snoring around
40% in adult men and 20% in adult women [11], [12], millions
of bed partners experience impaired sleep quality worldwide
[13]. Social intolerance of loud, persistent snoring is the most
serious reason for people to start treatment. Among many
surgical and non-surgical modalities, the most reliable are
palatal surgery and mandibular advancement devices (MAD)
[7], [14]. Some snorers experience not only fluttering, but
a full collapse, of the pharyngeal walls during inspiration.
This leads to apnea, a pause in breathing longer than 10
seconds. Direct consequences of single apnea are: hypoxia,
hypercapnia, arousal, and increased sympathetic activity. This
in turn leads to higher risk of cardiovascular diseases. 13% of
men and 6% of women have moderate to severe OSA [15],
but less than 10% of these are diagnosed in most countries.

There is an enormous need for a simplified screening in-
strument capable of convenient and reliable diagnosis of OSA
and snoring [16], [17]. As millions of children undergo surgery
each year due to sleep-disordered breathing and thousands of
adults undergo snoreplasty, there is a great need for a system to
provide long-term data analysis, to both measure the severity
of sleep breathing disorders and to monitor the effects of
different treatment modalities. Both snoring and OSA, in
children and adults, need to be measured easily and reliably
in a home environment.

Different approaches to SDB screening, particularly using
m-Health systems, have already been presented [18], [19]. The
easiest way to record one’s breathing sounds during sleep is to
use one of multiple smartphone applications that are prepared
to analyze snoring [20]. So far, there are dozens of smartphone
applications to record and analyze snoring, but all are based
on ambient, built-in microphone recordings. By contrast, in-
lab, medical sleep studies use medical sensors that record
snoring directly from the patient. These studies are expensive
and limited.

We introduce a novel sleep study device which utilizes
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a smartphone as a signal processing center, into which the
application is loaded and which could help the physician to
diagnose, and a wireless sensor which records and transmits
the breathing signals acquired from the trachea.

The aim of this study is to investigate the accuracy, par-
ticularly the sensitivity and specificity, of a novel method of
differentiating between normal breathing and snoring episodes,
using acoustic sensor and artificial intelligence techniques.

A preliminary version of this work was reported at the ERS
International Congress in London, in 2016 [21].

II. MATERIALS & METHODS

A. Participants

The participants in the study were 16 generally healthy
subjects (aged 25-75, 10 males, 6 females). Patients were
randomly selected among students and staff of the Warsaw
University of Technology. No medical history was collected
from the participants. 40 whole-night recordings were an-
alyzed. Subjects were asked to sleep in the most natural
way. All were informed about the aim of the study (we
complied with the World Medical Association Declaration
of Helsinki regarding ethical conduct of research involving
human subjects).

B. Sensor

We prepared a wireless acoustic sensor to measure sounds
registered during sleep from the upper respiratory tract at
the level of the trachea. The digital MEMS (micro-electro-
mechanical system) microphone unit, enabling 16-bit registra-
tion resolution and digital adjustment of amplification, sensi-
tivity, and subrange, was chosen. The housing was designed
and delivered. Figure 1 presents the concept of the prepared
system.

Fig. 1. The concept of the system (the acoustic sensor with wireless
connection to a smartphone).

The sensor was positioned on the front part of the neck of
the subject (at the sternal notch) using medical tape, strong
enough to keep in place during whole night. It could be
fixed by the subject itself, or by medical staff. The acoustic
signals were recorded from the body (membrane, acoustic
channel, and microphone were directed into the body). This
configuration enabled recordings of the best-quality signals

from an analytic point of view. Figure 2 shows the positioning
of the sensor on the neck.

Fig. 2. The positioning of the wireless sensor.

The signals were converted into a digital data stream.
Various sampling frequencies could be set by using an analog-
digital converter controlled by a dedicated microprocessor
(being a part of the sensor). A default frequency of 11025
Hz was established as a compromise between the transmission
restrictions and spectral content.

As the wireless sensor needed to operate continuously
throughout the measurement period, power consumption was
reduced through optimized software and hardware implemen-
tation. The rechargeable battery used enabled 8h recording
(for medical investigation, even 6h of continuous recording is
diagnostically sufficient and reliable).

C. Algorithms

The data stream was transmitted to the smartphone, where
all algorithms ran in real time. The flow of the algorithm is
presented in Figure 3.

Fig. 3. Flow chart of the smartphone algorithm. ANN: Artificial neural
network.

Preprocessing consisted of band-pass linear filtration to
extract the spectral sub-band strictly connected with breathing
and snoring frequencies. The filter was designed to have a low-
pass cut-off frequency 3.5 kHz and a high-pass frequency of
150 Hz.

The segmentation section was intended to mark the begin-
nings and ends of consecutive respiratory episodes (episode-
to-episode strategy). The algorithm began by calculating a sum
of signal spectral features (from 20 frequency ranges divided
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identically in the frequencies passed from the preprocess-
ing filter). Then, an adaptive threshold based on 10-second
segments of the signal (with 50% overlap) was calculated,
enabling selection of those signal portions which exceeded
the threshold.

Some heuristics were implemented to make the segmenta-
tion more robust:

• Duplicates created as a result of the overlap were re-
moved.

• Episodes that lasted longer than 3 seconds were split in
two (the smallest value of the acoustic signal envelope
found between 30% and 70% of the episode duration
was used as the break point).

• Episodes lasting less than 0.4 second were treated as
artifacts or insignificant speckles and removed from the
analysis.

Apnea sections were deducted from initial segmentation at
once. A classical strategy was employed, based on periods
between the determined episodes lasting over 10 seconds [22].
The improvement, regarding ineffective breaths, was added to
the algorithm and it consisted of removing episodes lasting
less than 0.5 second and whose time distance to at least one
neighboring episode was more than 6 seconds.

At the final stage of segmentation, the quality of the record-
ing was assessed to exclude those segments, which could
provide little or no significant information from an analytics
point of view. The assessment could be summarized by several
rules identifying poor signal quality:

• less than 10 episodes in one minute of recording (prob-
ably bad segmentation or signals quality),

• more than 5 episodes with a duration greater than 0.5
seconds (probably a large number of clicks in the signal),

• signal envelope does not exceed an arbitrary threshold
(probably low signal amplitude),

• break of at least 25 seconds between two consecutive
segmented episodes (probably an error in the recording
of a specific signal segment).

After segmentation came parameterization, in which acous-
tic signal parameters were calculated for all remaining
episodes. The ones presented below come from the analysis
of the full set of analyzed methods, reduced using the mRMR
(minimum Redundancy Maximum Relevance) feature selec-
tion method [23]. The main parameters were:

• the average and standard deviation of the signal’s absolute
values,

• the three first maxima of the frequency spectrum esti-
mated using 20th order Burg’s AR modeling method,

• the average and standard deviation of the signal’s values
on the mel scale,

• the ratios of the expected value to the minimum and of
the maximum to the minimum – calculated for a sound
episode extended by 5 seconds before and after each
segment,

• the parameters of 8th order Linear Prediction Coding
modeling,

• statistical parameters specified on the basis of historical
data.

In the next step of the process, the input vector containing
the sound signal parameters was fed to the classification stage.
There was an assembly of three independently trained and
differently composed multi-layer artificial neural networks.
Normal breathing was marked as ’0’, and snoring as ’1’ (each
network had one output neuron).

The output data obtained from each classification mod-
ule were fed to an inference module. The final output was
established using a voting strategy. When the classification
outputs of all neural networks were consistent, the process
was completed and output was stored. Otherwise, the result
closest to ’0’ or ’1’ was treated as the final classification.

The real-time analysis was conducted so that first recorded
minute was processed during registration of the second minute
and so on. The scheme is presented in Figure 4.

Fig. 4. Real-time analysis schematic.

Dividing the analysis process into small portions of recorded
signal made it possible to obtain a result for the whole period
of sleep immediately after waking up.

All algorithms were implemented in Java as an Android
application. Registrations were carried out on the three types
of devices: HTC One M8, HTC Desire C and Samsung Galaxy
Tab 2.

In order to prepare the Artificial Neural Network modules
and check the accuracy of the system, we examined acousti-
cally and labeled 1,525 episodes, of which 520 were snoring
ones, 1,000 indicated normal breathing, and 5 were marked as
“uncertain”. 60% of the database was assigned to a training
set and the remainder to testing (608 episodes, including 207
snores, were used for accuracy evaluation).

Labeling of the episodes was provided by four experts with
a peer-review strategy. The dominant answer is treated as
the final single reference. In case of draw, the vote for main
reviewer prevails.

D. Methods for result analysis

The analysis of results may include various parameters.
The number of pairs of neighboring episodes (assumed as
inspiration and expiration) determined the number of full
breaths, as in the equation:

NB =
(ne

2

)
+ nemod2

where: NB is the number of breaths and ne is the number
of detected episodes.

The time between two respiratory episodes, separated by
a single respiratory event, determined the respiratory rate (RR).
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Snoring episodes may be defined as ‘separate’ snoring
episodes or as a group of ‘aggregate’ ones. The number of
these was calculated as in the equation:

NS = nSS +
k∑

i=1

[(
nCS(i)

2

)
+ nCS(i)mod2

]

where: NS is the number of snores, nSS is the number of
separate snores, nCS(i) is the number of aggregate (collected)
snores in the i group, and k is the number of groups.

III. RESULTS

Our algorithm to determine breathing episodes based on
spectral thresholding and heuristics worked very well for the
entire recordings, except for body position changes, which
had to be removed from analysis. Figures 5, 6, 7, and 8
present the portions of recorded signals with segmentation
and classification results for normal breathing and snoring,
respectively.

Fig. 5. Sample of acoustic signal for normal breathing, recorded during sleep;
a.u. - arbitrary units.

Proposed system achieved mean 88.8% accuracy in the
differentiation between normal breathing and snoring. As it
is intended mainly for screening, high specificity of 95%
is reported. Relatively large Cohen’s Kappa, which equalled
0.7775, and was included to measure inter-rater agreement,
removing the part of the agreement occurring by chance,
should also be reported.

The confusion matrix of classification results and overall
evaluation of the accuracy (based on comparison with manual
labeling provided by four experts with a peer-review strategy)
are provided in Table I and II, respectively.

Fig. 6. Normal breathing segmented by the presented algorithm.

TABLE I
THE CONFUSION MATRIX OF THE RESULTS PROVIDED BY THE

CLASSIFICATION ALGORITHM COMPARED WITH THE REFERENCE LABELS
MARKED MANUALLY BY EXPERTS.

Reference
Prediction Breathing Snoring
Breathing 381 48
Snoring 20 159

TABLE II
SPECIFICATION OF THE SYSTEM ACCURACY.

Parameter Value
Cohen’s Kappa 0.7775

Accuracy 88.8%

F1 Score 82.4%

Sensitivity 76.8%

Specificity 95.0%

Positive Predictive Value 88.8%

Negative Predictive Value 88.8%

IV. DISCUSSION

There is no physical nor mathematical definition of snoring.
What we hear as snoring, it was so labeled – snoring is “in the
ear of the beholder” [24]. There are different methods of study-
ing breathing and other physiological parameters during sleep.
The gold standard in sleep studies is polysomnography (PSG).
The study measures multiple signals, among them airflow,
breathing effort, oxygen saturation, and snoring. According
to the scoring manual of the American Academy of Sleep
Medicine, three equivalent methods of snoring detection exist.
They are: acoustic sensor (microphone), nasal pressure trans-
ducer (cannula), and piezoelectric vibration sensor [1], [25].
These sensors do not measure snore events in the same manner
and exhibit important differences in sensitivity and positive
predictive value (0.79 and 0.94, respectively, for overhead
audio sensor; 0.78 and 0.92 for piezoelectric sensor; and 0.37
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Fig. 7. Sample of acoustic snoring signal, recorded during sleep with segments
and classification result provided by the algorithm; (S) indicates snoring, (B)
shows normal breathing.

Fig. 8. Sample of acoustic snoring signal, recorded during sleep with segments
and classification result provided by the algorithm; (S) indicates snoring.

and 0.82, respectively, and 0.55 and 0.67, respectively, for
different nasal cannulas), as was finally proved by Arnardottir
et al. in 2015 [1].

The study of Arnardottir et al. showed clearly that the
audio-based recordings of snoring are superior to other meth-
ods recommended by the AASM. Similarly to the team of
Arnardottir we used an audio-based sensor, but our recordings
came directly from the trachea and not from an ambient
microphone. We feel the tracheal recordings may be beneficial
in two ways. First, it is not possible to record quiet breathing in
the house environment from an ambient microphone. Second,
as was shown by Yadollahi et al. body posture does not alter
detection of breathing/ snoring significantly, when the tracheal
recordings are performed [26].

There are several studies using tracheal recordings in de-

tection of snoring. All used wired microphones. Yadollahi et
al. compared simultaneous ambient vs tracheal sound record-
ings from 23 patients [26]. The overall accuracy for both
measurements was around 90% for classifying breaths and
snores. The same team also investigated the tracheal sound
recordings along with pulse oximetry showing high correlation
(0.96) with PSG analysis [27]. Mesquita et al. focused on
time intervals between snoring episodes detected with tracheal
microphone and observed the correlation between non-regular
snoring and sleep apnea severity [28]. Similarly Fiz et al.
examined snoring recordings to associate it with the severity
of sleep apnea. In their study snoring intensity and frequency
seemed to be significantly different in snorers with different
apnea-hypopnea indexes (AHIs) [29].

Until now, snoring analysis in sleep studies has not been of
significant value in evaluating patients. However, recent years
have yielded a growing body of evidence that OSA detection
and AHI estimation based on whole-night audio recordings of
sleep is possible [16], [28], [30], [31], [32]. This led more
sleep specialists to carefully analyze breathing sounds. The
recordings could be made by built-in smartphone microphones
or by specially designed microphones. Smartphone applica-
tions were reviewed by Camacho et al. [20]: four authors
independently downloaded and rated 13 snoring applications.
Interestingly, one of the application was used to conduct a case
study. A patient who recorded himself over a period of one
month was advised what he could do to alleviate snoring.
Medical management was influenced by results reviewed each
night. This self-monitoring and self-adjustment of the patient’s
behaviors/habits helped to reduce snoring from 200 to 10
snores per hour.

For those applications, minimal or no involvement of sleep
medicine practitioners is required [20]. On the contrary,
Nakano et al. showed a classical medical study in which
a smartphone attached to the anterior chest wall over the
sternum was used to record breathing sounds [33]. The am-
bient sound of breathing was acquired and the recordings
were simultaneous with full PSG in 50 patients. Data from
10 patients were used to develop the program and those of 40
patients were used to validate it. The sensitivity and specificity
of the system showed that it could be used effectively in
a controlled laboratory setting.

A smartphone application is the easiest way to record ones
snoring, but it has some impassable limitations. First, there
are hundreds of different smartphones, having different built-
in microphones. This makes it impossible to prepare a tool
to similarly measure and analyze breathing sounds on each
of those phones. Second, the use of an ambient microphone
in the home environment does not allow measurement of the
sounds of regular breathing, which is too quiet to be properly
recorded; the only thing that can be recorded is loud snoring.
Third, sleep position (supine, prone, lateral) influences the
characteristics of the sound [34]. This information could be
correlated with respiratory-related analysis and improve the
inference part of the study [35]. Finally, various environmental
sounds, including the bed partner’s snoring, would affect
recordings from an ambient microphone.
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Limitations of the study

The system was not validated against full polysomnography,
the gold standard in sleep studies. So far, accuracy has only
been checked against manual scoring of the audio recordings.

It should be noted that the experts sometimes could not
agree on labeling. This could have an impact on overall
accuracy. As in every other study where audio recordings were
analyzed by experts, there was an inter-scorer disagreement in
around 17% of studied snoring/breathing episodes [36]. This
is due to the fact that no objective criteria of snoring exist. At
the same time, the accuracy of manual scoring is superior to
any automatic systems used in polysomnography.

Based on this problem, we decided to maximize the speci-
ficity and allowed the sensitivity to be at the level of 76.8%,
particularly considering home-based applications.

Criteria to assess signal quality were introduced arbitrarily,
due to the lack of standard. They could be adaptively estab-
lished during analysis. We did not focus on that in the paper.

There were no sensor loosening events during our mea-
surement. However, it seems that the additional parameter in
algorithm to alarm subject about the loosening should be added
to deal with such possibility.

V. CONCLUSION

The system enables classifying between normal breathing and
snoring. The combination of a smartphone and an external
sensor is in our opinion a perfect compromise between non-
medical phone applications and medical sleep studies. This
approach enables the study to be repetitive, personal and
inexpensive (as with smartphone applications) while relying
on well-recorded, reliable, comparable data (like a medical
sleep study).

This opens new possibilities in sleep monitoring and study,
enabling the collection of huge amounts of data from thou-
sands of people. Multi-night recordings finally make ideas
like the “Human Sleep Project” proposed by Till Roenneberg
possible [37]. The results are available immediately after
recording and could be shared with a doctor.

Further projects with a multichannel wireless sensor for
smartphone owners are already underway and the results will
be presented soon.
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