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ABSTRACT This study aims to evaluate the accuracy of a wireless tracheal audio sensor including the
sleep body position measurement, as a possible tool to screen for obstructive sleep apnea (OSA) and also to
distinguish among ‘‘positional’’ and ‘‘non-positional’’ sleep apnea patients. 30 adult subjects were asked to
sleep naturally for a single night in the sleep laboratory, having simultaneous polysomnography (PSG) as a
reference. The results were compared using, e.g., Pearson’s and Lin’s correlation coefficients, Bland-Altman
plots, mean absolute error, intercept of the fitted linear model etc. We found the thresholding approach
performed on normalized audio energy data achieved mean absolute error of 5.7, and average difference
was −2.0. Pearson’s and Lin’s R coefficients were 0.92 and 0.70, respectively. The qualitative approach
reached 86% accuracy (sensitivity of 96%, and specificity of 76%) when setting a binary border at the level
of AHI = 15 (combined normal + mild versus combined moderate + severe cases). We also checked the
distribution of apneas depending on the body position. Our sensor showed a mean± SE difference between
supine apnea index and non-supine apnea index of 8.3 ± 3.2, while PSG reference of 11.2 ± 3.8. The
proposed sensor might be a good complement for home sleep studies, being less disturbing and allowing
for longitudinal observations and reliably showing positional OSA. PSG is the gold standard in diagnosing
OSA; however, it requires to spend a night in a lab with medical staff, it provides short observation, the cost
of the study is very high, and it is less suitable for children. This is why a reliable screening method is needed
in sleep medicine.

INDEX TERMS Obstructive sleep apnea, apnea-hypopnea index, home sleep study, tracheal sounds, audio
processing, supine sleep, non-supine sleep.

I. INTRODUCTION
Obstructive sleep apnea (OSA) is a highly prevalent sleep
disorder that can cause significant daytime sleepiness and
result in many cardiovascular comorbidities [1]–[3]. It is
characterized by repetitive upper airway obstruction and
significant airflow reductions during sleep resulting in inter-
mittent hypoxia and sleep fragmentation [4]. As a moderate-
to-severe OSA can be diagnosed in as many as 49% of adult
males and 23% of adult females [5], the disorder should be
diagnosed and treated as early as possible.
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Current sleep studies, full polysomnography (PSG)
and abbreviated home sleep apnea tests (HSAT), are
labor-consuming and costly. They require to spend a night
in a lab with medical staff, provide short observation, and
are less comfortable and available for children. That is why
a simple method is needed to address this problem. One
of the most promising methods of simple OSA detection
is an audio-based approach. As OSA’s pathophysiology is
the upper airway obstruction, the sound of breathing car-
ries a good load of data regarding breathing disorders dur-
ing sleep [6]. In the last few years, studies on breathing
sounds were performed using ambient, together with built-in
smartphone microphones, or contact microphones [7]–[12].
The highest accuracy of breathing episodes detection can
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be obtained from contact-microphones located on the neck,
where the tracheal sounds are recorded.

Interestingly, different sleep positions can alter the breath-
ing sounds, and change the severity of sleep apnea in many
patients. In most patients referred to sleep clinics, the severity
of sleep apnea increases while sleeping supine. Up to 60%
of patients have an apnea-hypopnea index twice as high
sleeping supine – this situation is called positional obstructive
sleep apnea (pOSA) [13], [14]. That is why the simultaneous
recording of sleep position is another important issue in newly
developed sleep sensors. It might be even more important in
a personal home-based sleep study that can also be used as
a sleep position trainer.

In a previous paper, we introduced the wireless acoustic
sensor system communicating with a smartphone application
that can be used for screening breathing disorders during
sleep [15]. We showed high accuracy in the automatic detec-
tion of normal breathing and snoring episodes. We currently
developed a multi-channel wireless sensor with two acoustic
channels and accelerometry unit to measure body position
and activity during sleep (see Methods).

A similar system has been recently described by Saha
et al. in a paper, where a sensor combined of microphone and
accelerometer was used [16]; however, the accelerometer was
used for respiratory related movements detection (to validate
apneic and hypopneic events detected with audio analysis),
not to combine audio with body position for positional OSA
analysis. Also, Kalkbrenner et al. used a tracheal microphone
connected with an accelerometer, but here the accelerometer
was separately mounted on the chest, and not in a single
wireless sensor [17]. Both studies used accelerometry signals
and acoustic recordings to detect breathing episodes, apneas,
and hypopneas. However, the authors did not address the
problems of detecting supine and non-supine sleep apnea.
To our knowledge, only a paper by Levendovsky et al. was
aimed at positional sleep breathing disorders, using a system
mounted on the back of the neck. Still, it only analyzed snor-
ing intensity without detecting apneas and hypopneas [18].

This study aimed to show the feasibility of a wireless
sensor that records and analyzes tracheal breathing sounds
and sleep position and actigraphy to analyze positional sleep
apnea. We hypothesized that adding the sleep position data
could benefit from getting more information on a patient’s
sleep. We could measure this way, similar to a regular sleep
study, the supine and non-supine sleep breathing disorders.

II. MATERIALS & METHODS
A. PARTICIPANTS
30 adult subjects participated in the study. The characteristics
of the group is presented in Table 1.

B. PROTOCOL AND DEVICES
A technician asked all participants to perform a single
full polysomnography in the sleep laboratory of Otorhino-
laryngology Department at Czerniakowski Hospital, Warsaw,

TABLE 1. The characteristics of the study group; all results presented as
median(IQR;min−max).

Poland. The data were recorded using the Nox A1 PSG Sys-
tem, a full and portable polysomnography system, created by
Nox Medical, Iceland. During the analysis several exported
data and report details were taken into account:
• raw accelerometry data, sampled with 20 Hz,
• estimated body position and activity data, sampled with
200 Hz,

• AHI calculation as single one-night parameter, and
• beginnings and ends of central or obstructive apneas.
During the recordings, the audio and motion sensor was

placed in the suprasternal notch on the neck, to record tra-
cheal sounds. It enables recording of two audio signals,
from the body and from the field, using digital microphones
with 8000 Hz sampling frequency, and 3-axis motion sig-
nals - using accelerometer with 52 Hz sampling frequency.
An accelerometer enables recording of actigraphy - body
position and subject’s activity. The device does not have the
CE mark yet, and it is not available on the market; however,
it does not prevent from results replication, as the sensor
comprises generally available audio and motion sensors. The
dimensions of the sensor are 33 x 39 x 13 mm, the diameter
of the membrane is 21.8 mm, the sensor weight is 18 g. The
current battery allows over 14h of operation. The memory
capacity is defined internally by 2GB FLASH chip or can
be extended by external microSD card. Computations are
performed on 32-bit ARM Cortex-M4 micro-controller with
DSP dedicated unit, 128 kBRAM , and running at 64MHz.

The recommended placement is on the neck (supraster-
nal notch). The sensor can be attached using a medical
double-sided patch, which is more comfortable than a band
holding it around a neck. Based on the questionnaire reports
from the users, it stayed well in place during the entire
night, did not disturb natural sleep, and did not introduce
any discomfort, even during momentary awakenings at night.
Nobody refused to use the sensor in the future. Its photogra-
phy is presented in Figure 1, and the placement on a neck
in Figure 2.

The sensor has an internal storage, enabling to save raw
data. All algorithms will be implemented on-chip, allowing
real-time analysis during sleep (not affecting the battery life
much - it was already tested) and presentation of the results on
smartphone screen just after waking up. Therefore, the main
setup is that only the results of the analysis is transmitted
wirelessly (using Bluetooth protocol) to the mobile app.

The procedure was approved by the Ethics Com-
mittee of Medical University of Warsaw (KB/14/2018).
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FIGURE 1. The photography of the sensor; outer part on the left, and
inner part (directed to the body) on the right.

FIGURE 2. The placement of the sensor on a neck.

FIGURE 3. The conceptual scheme diagram of the audio- and
motion-based analysis.

All participants were informed about the general aims of the
measurements, and each had signed a general consent form
for the routine medical monitoring, consisting of a statement
of acceptance of the use of the results for scientific purposes,
before the study.

C. AUDIO DATA ANALYSIS FOR APNEA DETECTION
The conceptual diagram presenting the flow of analysis in the
II.C-II.E sections is shown in Figure 3.

FIGURE 4. The sample audio signal (absolute) with detected envelope
and short-term energy signals; Y-axis units are arbitrary.

PSG recording, treated as a reference study was evaluated
by a sleep physician using the standard criteria defined by the
American Academy of SleepMedicine after the examination,
and based on automatic initial analysis. However, the exact
synchronization between PSG and the audio and motion
sensor could not be obtained. Therefore, we focused on the
indirect approach. Several methods were used to estimate the
number of apneas (all central, obstructive and mixed, next
divided by total sleep time) from the audio signal. Then,
the value was compared with the number of apneas detected
in PSG study, also divided by the duration of sleep. In the next
step we are going to add hypopnea analysis to get the entire
AHI parameter, as the synchronization is reached.

Before the analysis, we performed the pre-processing of
the audio data. We took into account only the microphone
measuring from the body, as the ambient one is rather used
both for snoring and subject’s activity recording, and for
a signal to noise ratio reduction. First, we filtered the sounds
within 100 − 1800 Hz frequency range. Then, the 2-fold
decimation - to 4000 Hz of sampling frequency, was carried
out. Next, 3 signals were calculated/detected:
• envelope of the absolute sound;
• short-term energy; and
• airflow estimate.
The first ones were calculated using rolling maximum

value within a window of 1/3 second, then decimated to 50Hz
and properly filtered - smoothed; using low-pass FIR filters.
The second oneswere estimatedwithin a short 16mswindows
(64 probes in each) and then decimated in the same way as
for the envelope. The last one comes from the short-term
energy signal and it is arbitrarily calculated as its square root,
which changes the dynamics of the signal - lower values are
amplified in comparison to the higher one, which makes the
characteristics similar to airflow curve.

The example of an envelope and short-term energy sig-
nals calculated for the absolute audio signal is presented
in Figure 4.

We decided to implement and evaluate two approaches:
thresholding- and segmentation-based.

The first one comes from the consideration presented by
Kalkbrenner at el. [17] and based on the AASM guide-
lines [19]. It assumes, that the apnea is found, when the
envelope of the signal is lower than an established threshold
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for at least 10-seconds. As it is too arbitrary, we decided
to evaluate, in reference to the PSG, all three signals, with
or without adaptation of the level of normal breathing, with
or without normalization of the data within long segments,
and with various threshold levels. We checked the accuracies
between 2% and 15% - by 0.5% - of the normal breathing
level.

The adaptation is performed in such a way, that the max-
imum level of normal breathing is established for the last
30 minutes (this level is taken for threshold calculation and
is introduced to adjust to the nature of the signal and become
more independent of possible artifacts), and not for the entire
recording, as the amplitude may vary according to the body
position. The normalization of the audio amplitude is based
on the same consideration and it is performed in regard to the
maximum value within the last 30 minutes.

The second approach is based on the previously published
algorithm for segmentation breathing episodes and classify-
ing them as normal breathing or snoring [15]. If there is an
interval greater that 10 seconds between subsequent detected
episodes (after removing possible ‘‘crackles’’ and noises),
we may count in the apnea indexes.

In order to perform comparative analysis, the Shiny web
app (with R-language-based calculations in the background),
described in [20] is used. Here, we reported classical Pear-
son’s correlation coefficient (Pearson’s R), Lin’s concor-
dance coefficient (Lin’s R), intercept of the linear model
best fitted to the data points (Intercept), mean absolute error
(MAE), the average difference (AD; similar to bias from the
Bland-Altman diagram), and limits of agreement from the
Bland-Altman diagram). Pearson’s coefficient is reported as
a preliminary illustration; the discussion about its possible
disadvantages is presented in [20]. Lin’s version is treated as
a more suitable index of reliability.

D. ACCELEROMETRY DATA ANALYSIS
Probably all commercial devices operate within four main
sleeping body positions - supine, prone, left side, and right
side. Therefore, we prepared a simple algorithm of body
position calculation based on the pitch and roll estimation
from raw 3 axes accelerometry registrations (input informa-
tion). The equations to calculate the position of the sensor
compared to the gravity, are as follows (1-2):

Roll[rad] = arctan(
Y
X
) (1)

Pitch[rad] = arctan(
−Z

√
X2 + Y 2

) (2)

where X-Z are acceleration in all axes, respectively.
Then, the body position (output information) is classified

using a simple hierarchical tree. First, when Pitch is less than
75 degrees the position is considered as lying, and the roll is
taken to determine one of the four lying positions by dividing
the circumference of 360 degrees into 4 parts and small breaks
of 2 degrees each to highlight the changes and uncertainty.

The simple activity measure is calculated by estimating the
accelerometry ‘‘vector’’, as in the Equation (3):

ACC =
√
X2 + Y 2 + Z2 (3)

where ACC is an accelerometry vector, and X-Z have the
same meaning as in Equations (1-2).

Then, the constant component is being removed, and
the high activity is set, when an arbitrarily set threshold
is exceeded. As the PSG device enables to record 3-axis
accelerometer signals and stores body position and subject’s
activity measures, we used them to evaluate the accuracy of
the implemented simple algorithms.

E. JOINT SOUND AND MOTION ANALYSIS
As the used sensor has both sound and accelerometry sen-
sors, we may calculate joint indexes providing new clinical
context. Therefore, we use two coefficients:
• sAI - supine Apnea Index, and
• nsAI - Apnea Index during all non-supine body positions
(prone, sides - as these are usually less impactful on the
number of apneas).

Both are calculated as the sum/number of detected apneas
occurring during supine or non-supine sleeping body position
respectively, then divided by the total recorded supine or
non supine sleeping time. We hope that splitting the analysis
into two various conditions (supine- and non-supine-related)
enables to estimate the impact of the position on the number
of apneas; and then to help to reduce the overall AI metrics
by a positional training. Particularly, when sAI is definitely
bigger than nsAI, and nsAI is relatively low - then, reducing
sleeping time being supine can help to breathe better at night.

F. MACHINE-LEARNING-BASED AUDIO ANALYSIS FOR
QUALITATIVE AHI ESTIMATION
In the last step, we implemented non-linear-feature-based
approach, that comes from the idea presented in the
paper [21]. It relies on estimating parameters, e.g.:
• Sample Entropy;
• Approximate Entropy;
• Q3 of the absolute signal first derivative, treated as
evaluation of signal variability; and

• S Transform (simpler equivalent to FFT, for indirect
spectral analysis),

within 10-second-lasting windows, with 50% overlapping.
And then, quantile distribution of all parameters was taken as
the input for classification, as a strictly qualitative approach
was considered.

The entire AHI (not only apneas) was assessed in four
ranges - normal (AHI < 5), mild (5 ≤ AHI < 15), moderate
(15 ≤ AHI < 30), and severe (AHI ≥ 30) - based on the
medical guidelines for adults [22].

We decided not to implement direct spectral features,
e.g. coming from MFCC analysis or just FFT calculations,
in order to accelerate the analysis to be performed on
the chip during the measurement. We performed 10-fold
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FIGURE 5. The comparison between reference (PSG) and predicted (from
our sensor) apnea-index (number of apneas per hour of sleep) for
thresholding approach and taking into account short-term energy signals
and 5% of threshold level.

hold-out cross-validation, in which for each iteration ran-
domly selected 66% of data (20 subjects) were taken for
model training, and the remaining 10 subjects were used for
testing. The classification was performed using 3 commonly
used machine learning methods.
• Random Forests;
• C5.0 (boosted recursive partitioning); and
• XGBoost.
Entire analyses presented in II.C and II.D sections were

carried out using MATLAB. In II.E section, the parameter-
ization was performed in Matlab, and the machine-learning
process, comprising data division, cross-validation, model-
ing and validation, was done using R language. Shiny web
app uses R language in the background, as described in [20].

III. RESULTS
A. APNEA RATE ESTIMATION
For the thresholding approach and after exploring all of
the combinations, the greatest coherence between audio and
motion sensor and PSG was achieved for the short-term
energy signal, after normalization within 30-min segments,
and the threshold of 5%. Then, resulting in:
• Pearson′sR = 0.92 ∗ ∗∗,
• Lin′sR = 0.70,
• Intercept = 5.0,
• MAE = 5.7,
• AD = −2.0, and
• Limits± 1.96SD = 13.3.
Figure 5 presents the graphical comparison of the apnea-

index, not considering the body position, and Figure 6 shows
the corresponding Bland-Altman plot.

On the other hand, the segmentation-based method allows
searching and counting the moments, where the break
between subsequent episodes is greater than 10 second,
or when the irregularity of found episodes are above the
threshold. Then the results are worse (except the average
difference) than for thresholding method:

FIGURE 6. The Bland-Altman plot between reference (PSG) and predicted
(from our sensor) apnea-index (number of apneas per hour of sleep) for
thresholding approach and taking into account short-term energy signals
and 5% of threshold level.

FIGURE 7. The comparison between reference (PSG) and predicted (from
our sensor) apnea-index (number of apneas per hour of sleep) for
segmentation-based approach.

• Pearson′sR = 0.77 ∗ ∗∗,
• Lin′sR = 0.60,
• Intercept = 7.3,
• MAE = 9.0,
• AD = 0.1, and
• Limits± 1.96SD = 22.3.
Figure 7 presents the graphical comparison of the

apnea-index, not considering the body position, for
segmentation-based approach, and Figure 8 shows the cor-
responding Bland-Altman plot.

B. BODY POSITION ESTIMATION
The accuracy of body position classification with audio and
motion sensor vs PSG data in a hierarchical system was as
follows:
• 99.9% for lying / non-lying distinguishing; and
• 97.3% for lying supine / non-supine.
It was noted that further improvement of the accuracy,

mainly by adopting some heuristics related to body positions
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FIGURE 8. The Bland-Altman plot between reference (PSG) and predicted
(from our sensor) apnea-index (number of apneas per hour of sleep) for
segmentation-based approach.

TABLE 2. The calculation of sAI and nsAI using audio and motion sensor
and thresholding method; ‘‘-’’ means that the body position lasted less
than 1 hour during the entire night; and arbitrarily, estimating an index
would not be meaningful then.

changes and to parts of the registration when the subject’s
activity is the highest, would require fully synchronized reg-
istrations.

C. sAI AND nsAI CALCULATION
As the Lin’s concordance coefficient and MAE appears more
important than AD, and there are no division for Apnea Index
- to perform standardized quantitative analysis, we chose
thresholding approach as the most efficient for sAI and nsAI
calculation. We gathered sAI and nsAI parameters for all
subjects using our sensor. They are stored in Table 2.

According to the results, six out of 30 subjects slept in
a supine body position for less than 1 hour during a night;
and therefore, we decided not to calculate the sAI then (PSG
analysis reported 7 of such cases).

For the remaining subjects we checked the significance
of the differences using Wilcoxon signed rank test (with the
significance level of 0.05). Mean ± SE of the difference
between sAI and nsAI for the audio and motion sensor were
8.3 ± 3.2 (p-value = 0.012 *; 3.4(16.3) median(IQR)), and
for PSG reference they were 11.2 ± 3.8 (p-value < 0.001
***; 5.5(17.3) median(IQR)). Just for reporting, PSG data
suggested the sAHIs were greater that nsAHIs with a median
difference of 17.1 (p-value < 0.001 ***).

TABLE 3. The confusion matrix presenting the comparison between
reference and predicted AHI index based on the non-linear-based
approach. As we chose hold-out cross-validation, in each iteration, there
are 10 subjects taken for testing. There are also 10 iterations, so 10 times
10 gives 100 - the sum of values in the table.

TABLE 4. The combined confusion matrix presenting the comparison
between reference and predicted AHI index, when normal and mild cases
are combined, as well as moderate and severe ones. As we chose
hold-out cross-validation, in each iteration, there are 10 subjects taken
for testing. There are also 10 iterations, so 10 times 10 gives 100 - the
sum of values in the table.

D. QUALITATIVE AHI ESTIMATION
The non-linear-based approach had the highest performance
for random forest classifier. The confusion matrix is pre-
sented in Table 3.

The overall accuracy was only 67%, with relatively accept-
able Cohen’s Kappa value (0.478). More detailed analysis
presents, that Mild and Severe classes are best distinguished
(with sensitivity of 68% and the specificity of 89% for the
former; and the sensitivity of 90% and the specificity of 78%
for the latter).

However, when combining Normal with Mild, and Mod-
erate with Severe we may obtain the overall accuracy of
86%, with the sensitivity (finding more severe cases) of 96%,
and the specificity (related with less severe cases) of 76%.
It appears it is enough accuracy for screening purposes. The
combined confusion matrix is presented in Table 4.

IV. DISCUSSION
The development of new, wireless sensors together with an
environment for ‘‘big data’’ analysis is a must nowadays in
sleep medicine [23]. Currently used methods for OSA diag-
nostics like polysomnography or polygraphy have multiple
limitations among which the cost of a study, hospital condi-
tions, and inconvenience of cables and sensors, are predomi-
nant. We do not try to undervalue PSG in the clinical practice,
but rather we would like to emphasize a great need to develop
a system for a cheap and reliable OSA screening performed
in the multi-night setting, e.g., to monitor treatment effect in
an outpatient setting and to select, who would need full PSG.
Of course, such screening would not be possible for some
groups of patients, like ones with seizures, arrhythmias or
coronary artery disease, who still should be scheduled for a
regular sleep study, according to the medical recommenda-
tions [24], [25].

Currently, questionnaire-based screening is the only pos-
sible way to sample big cohorts. Among the many ques-
tionnaires, the four most often used are Epworth Sleepiness
Scale (ESS), Berlin Questionnaire, STOP, and STOP-BANG
questionnaire. As multiple studies show the major problem
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with the use of questionnaires is a low specificity of the
method. This, in turn, leads to a high false positive result and
a failure in the exclusion of low-risk patients [26]. Among
newly proposed methods of OSA screening are photoplethys-
mography [27], ballistocardiography [28], piezoelectric sen-
sors [29], accelerometers [30], audio signals [31], [32], and
radar-based systems with non-contact sensing for sleep apnea
and sleep body position, respectively: [33], [34]. Most meth-
ods which could be used for home detection of OSA were
recently reviewed byMendonça et al. [11].
In this study, we used the sensor, which measures the

audio data, simultaneously with motion signals from 3-axis
accelerometers. Of course, it is not the first study presenting
the tracheal audio registration. Other systems were presented
and discussed in our previous paper [15] (see Discussion).
The sensor appears to fit the wearable sensing paradigm,
discussed in [35]. We tested several placements of the sensor,
e.g., in different places of the neck, on chest (upper sternum
and middle sternum), and based on the signal-to-noise ratio,
suprasternal notch appeared the best place to put the device.
Moreover, sternum locations amplified heart tones, while
muting the respiratory ‘‘noises’’.

We checked several approaches and found that the thresh-
olding applied at the short-term energy of the audio signal
with a normalized level of normal breathing achieved the
best performance of the quantitative estimation of apnea
index. The reported accuracies are worse than in the study of
Kalkbrenner et al. [17]. Probably, it is due to signal quality
and indirectly due to the lack of synchronization. The dis-
crepancy between predicted Apnea Index (from our sensor)
and reference AI (PSG-based) is higher for mild cases. This
is a known phenomenon - with lower AHI, the differences
between nights are greater even when using one type of
reference device. For this reason, overnight tests should be
multi-night and ‘‘averaged’’. This was clearly stated lately by
Roeder and Kohler [36].

On the other hand, a qualitative technique using a random
forest classifier allowed to report 86% of accuracy (with the
sensitivity of 96% and the specificity of 76%), when setting
a binary border at the level of AHI = 15. Interestingly,
in the review on detecting sleep apnea using deep learn-
ing methods [37], only a single study focused on breathing
sounds by Kim et al. was found [38]. In that study, they used
breathing sounds with the accuracy of 88.3% for four-group
AHI classification, and 92.5% using binary classification.

The development of a personal sleep study device would
finally enable an era of ‘‘personalized sleep medicine’’.
As there are dozens of different methods of OSA treatment,
including weight reduction, lifestyle changes, etc., the use
of home-based personal sleep study is crucial to monitor
OSA status before and after any intervention. Interestingly,
personalized sleep diagnostic sensor can provide not only
diagnostic but also therapeutic options. One of the therapies
that can be successfully used by the patient himself is posi-
tional therapy when ‘‘positional OSA’’ occurs [39], [40]. For
this reason, a personal sensor needs not only to be a breathing

disorders sensor but simultaneously has to assess body posi-
tion during sleep. Our results show close to 100% accuracy
in assessing body position relative to the PSG-based results.
Although the position of our sensor was different from the
PSG accelerometer (located on the thoracic belt), but that
did not influence the overall accuracy. This shows that there
is probably no need to mount a second sensor on the chest
as in the system proposed by Kalkbrenner et al. [17], [41].
As most of the actigraphy systems are wrist-worn this should
also be discussed. There are several important advantages
in using a chest/neck placement of the actigraphy vs. wrist
actigraphy. First, the possibility to acquire additional signals
from a chest/neck location, such as heart rate variability,
needs to be mentioned [42]. Also, a chest/neck actigraphy
can add additional data on sleep position unlike wrist actig-
raphy [43]. This could also be shown in our study where a
sleep position detection reached near 100% values comparing
to PSG data. The study by Razjouyan et al. also showed that
the chest actigraphy could identify sleep/wake episodes with
an accuracy of on average 6% higher than wrist sensors [43].

The results of our study showed feasibility of distinguish-
ing between positional and non-positional OSA patients.
Therefore, positional therapy could also be implemented in
pOSA patients. Similarly, a system described by Levendowski
et al. showed a possible acquiring of positional OSA with a
system mounted on the back of the neck [18]. Interestingly,
the authors show two cases of under-reporting of supine sleep
with their device - one in a situation of trunk supine and
neck upright position, and one with trunk supine and head
lateral position. We feel our sensor placement would not be
vulnerable to such situations and would show a position in
agreement with chest actigraphy, but additional studies are
needed. Zhu et al. for the first time analyzed the role of head
position in positional OSA [44]. They found a significant
reduction in AHI during supine sleep while the head was
rotated to the right or to the left. The drop in AHI was dra-
matically more significant when a patient was in head-lateral
and trunk-lateral position. So, the final location of the sensor
position in sleep studies needs to be further assessed, as the
chest may not be the ideal place.

The main weakness of this study is a limited number of
patients and the lack of complete synchronization between
PSG and audio/motion signals. Therefore, wewere not able to
perform the analysis, in which all references (e.g., beginnings
and endings of both apneas and hypopneas) have a temporal
relationship with calculated audio features; we could only
compare the final predicted number of apneas along with
the ground truth value without the possibility to estimate
event-based metrics of accuracy. Accordingly, the quantita-
tive prediction of hypopneas was almost impossible in this
setup; however, we include them in the qualitative analysis
presented in sections 2.6. and 3.4. Those also did not allow us
to use more sophisticated methods, like recurrent deep learn-
ing techniques, like it was presented by Nakano et al. [45].
The device do not allow to distinguish central and obstruc-
tive apneas, as there is no EEG and direct respiratory effort
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information; however, we will work on it, as in our opinion,
audio contact sensor with actigraphy together might be used
to analyze respiratory effort indirectly.

Also, there was no assessment of the efficiency of the pro-
posed method in the home uncontrolled environment, where
various sounds of the ambiance may interfere with the audio
features taken for the analysis.

V. CONCLUSION
The assessment of quantitative and qualitative accuracy of
audio sensor in apnea detection showed promising results.
The thresholding approach allowed us to achieve around
−2± 13 (Bland-Altman bias and limits of agreement), mean
absolute error of 5.7, and Pearson’s and Lin’s R at the levels of
0.92 and 0.70, respectively. Random forest classifier reached
86% accuracy (96% of sensitivity, and 76% of specificity)
of distinguishing between normal/mild, and moderate/severe
cases.

The results might be even better once the full synchro-
nization with PSG is preserved. What is more important,
presented audio and motion sensor has also an activity sensor
(3-axis accelerometer), enabling positional OSA analysis.
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